Comparison of the Odor Concentrates by SDE and Adsorptive Column Method from Green Tea Infusion

Mitsuya Shimoda,*,† Hiroko Shigematsu,‡ Hideki Shiratsuchi,† and Yutaka Osajima†

Department of Food Science and Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812, Japan, and Seika Women's Junior College, 2-12-1 Minamihachiman-cho, Hakata-ku, Fukuoka 816, Japan

The odor concentrates from green tea prepared by a simultaneous distillation and extraction (SDE) under reduced pressure and an adsorptive column method were investigated. A total of 218 compounds were quantified and identified by GC and GC-MS. Total concentrations were 92.9 ppm by SDE and 11.9 ppm by the column method. The concentrations of aliphatic alcohols and aldehydes were 7409 and 2681 ppb in the SDE concentrate and 241 and 108 ppb in the column concentrate, respectively. The concentrations of terpene alcohols were 8399 and 807 ppb, respectively. Most of ketones were found several times in the SDE concentrate compared with the column one. Further, large quantities of 1-propen-2-yl formate, pentyl formate and (Z)-3-hexenyl butanoate were formed during SDE, while 3-hexenyl hexanoate decreased. Coumaran, coumarin, vanillin, furanones, and lactones disappeared, while aromatic aldehydes, ionone derivatives, and indole were formed in quantity during SDE operation. SDE caused serious formations and decompositions of volatile compounds in green tea infusion, but the column method gave the odor concentrate with natural green tea flavor.

Keywords: Volatile compounds; green tea; Sen-cha

INTRODUCTION

Green tea is the most widely consumed beverage in Japan because of its pleasant flavor aside from its stimulating effect. Among green tea products, Sen-cha is the most popular one, representing over 80% of total production of green tea. Recently, its flavor has been used in pudding, cake, ice cream, soft drinks, etc. A canned green tea beverage is also manufactured commercially.

Volatile compounds of green tea have been investigated by many researchers, and over 300 volatile compounds have been reported (Yamanishi, 1978; Yamaguchi et al., 1981; Nguyen and Yamanishi, 1975; Hara and Horita, 1987; Hara and Kubota, 1982; Kawakami et al., 1991, 1981). These researchers have prepared the odor concentrate by a combination of steam distillation under reduced pressure and solvent extraction. It is, however, common knowledge that the flavor of green tea infusion is influenced sensitively by brewing temperature, brewing time, and quality of water, e.g. hardness and hypochloride concentration of tap water. Therefore, a method for separation and concentration of volatile compounds is a most important experimental factor for analysis of the volatile flavor compounds in green tea infusion.

In this study, a quantitative comparison of volatile compounds was carried out between the odor concentrates prepared by using a modified Likens-Nickerson apparatus (SDE method) under reduced pressure and those prepared by an adsorptive concentration method using a column packed with porous polymer beads.

MATERIALS AND METHODS

Green Tea. Fifteen Sen-cha products (*Camellia sinensis* L. var. Yabukita) of medium grade, based on market price, were obtained from The Tea Branch, Agricultural Institute of

Fukuoka Prefecture. Green tea samples were stored in a refrigerator $(-20 \text{ }^\circ\text{C})$ until analyzed.

Reagent. Methanol was passed through a column (35 mm \times 500 mm) packed with an analytical grade active charcoal to remove impurities. Porous polymer beads, Porapak Q, were from Waters. All other reagents were analytical grade materials.

Adsorptive Column Method. Deionized hot water (80 °C, 1.0 L) was added to 50 g of Sen-cha, and the leaves were filtered by a coarse filter paper after standing for 3 min. The filtrate was immediately cooled to about 40 °C in tap water and passed through a column (28 mm \times 250 mm) packed with 50 mL of Porapak Q. After the column was washed with 80 mL of deionized water, adsorbed compounds were eluted with a mixed solvent (80 mL) of diethyl ether and isopentane (1:1 v/v), which could elute volatile compounds quantitatively but did not elute polyphenols adsorbed on the column. On the other hand, with ether, polyphenols were eluted and obstructed preparing the odor concentrate for GC and GC-MS analysis (Shigematsu et al., 1994). The eluate was dried over anhydrous sodium sulfate for 12 h after the addition of internal standard (5.0 μL of 1.0% cyclohexanol), and the solvent was evaporated to about 1.0 mL. The adsorptive column could be regenerated by washing with ethyl ether (60 mL), purified methanol (80 mL), and deionized water (80 mL). Fifteen batches of Sen-cha samples were successively treated by this method (total amount treated = 750 g). The concentrated eluates were put together, and further concentration was conducted to about 200 μ L.

Modified Likens–Nickerson Method (SDE Method). A sample (200 g) from the mixture of 15 batches of Sen-cha products was placed in a 2-L round-bottom flask, and deionized water (1.0 L) was added. Ethyl ether (70 mL) was used as an extracting solvent, and a SDE head was attached. The separation of volatile compounds was carried out under reduced pressure (150 mmHg, 70 °C) for 50 min. The condenser of the SDE head was cooled with a mixture of water and ethylene glycol at -5 °C. After the addition of internal standard (20 μ L of 1.0% cyclohexanol), the extract was dried over anhydrous sodium sulfate and concentrated to about 100 μ L.

Gas Chromatography (GC) and Gas Chromatography– Mass Spectrometry (GC-MS). A Shimadzu GC-14A equipped with a 60 m \times 0.25 mm i.d. DB-Wax, film thickness 0.25 μ m, fused silica capillary column (J&W Scientific, Folsom,

^{*} Author to whom correspondence should be addressed.

[†] Kyushu University.

[‡] Seika Women's Junior College.

CA) and a flame ionization detector (FID) was used. The oven temperature was programmed from 50 to 230 °C at 2 °C/min. The injector and detector temperatures were 200 and 250 °C, respectively. The flow rate of helium carrier gas was 26 cm/s. A JEOL Automass 50 mass spectrometer interfaced with a Hewlett-Packard Model 5890 series II gas chromatograph was used for the identification of GC components. The column and oven conditions for GC-MS analysis were as described for GC analysis. Retention indices were estimated in accordance with a modified Kovats method (Van den Dool and Kratz, 1963) and compared with reported values. The mass spectra of the unknown compounds were compared with those in the NIST data base of the Automass 50 system and other published spectra (*Eight Peak Index of Mass Spectra*, 1983; *Wiley/NBS Registry of Mass Spectral Data*, 1989).

Preparative GC and Sniffing. To evaluate odor attributes of GC peaks, a preparative GC and sniffing was done (Shimoda et al., 1993) with the SDE and column concentrate. For preparative GC, a Shimadzu GC 8A was used, equipped with a 40 m \times 1.2 mm i.d. chemically bonded PEG 20M (film thickness 1 μ m) megabore open tubular column (Chemical Inspection and Testing Institute, Tokyo) and an FID. The oven temperature was programmed from 50 to 220 °C at 2 °C/min. Helium carrier gas flow rate was 18 mL/min with a splitless injection. Short capillaries (25 cm \times 0.53 mm i.d.) with a chemically bonded phase of PEG 20M were used for trapping separated fractions or components with a split ratio of 20:1. The separated compounds were eluted on a filter paper with a drop of ethyl ether, and the odor was sniffed by two trained members.

RESULTS

In this study, the combined concentrates of volatile compounds from the 15 Sen-cha products were applied to GC and GC-MS analysis to obtain a typical composition of volatile flavor compounds of a medium grade Sencha. The odor concentrate by the column adsorptive method had a pleasant green tea odor with fresh, brisk, and sweet odor attributes, but that by the SDE method had a boiled green tea odor with woody, astringent, and stinging green odor attributes. Table 1 lists the identified compounds and quantitative values, which were calculated from peak area ratios to internal standard and related to the weight of Sen-cha product. A total of 218 compounds were definitely or tentatively identified including 38 alcohols, 28 aldehydes, 52 ketones, 20 esters, 9 acids, 4 phenols, 6 miscellaneous oxygenated compounds, 22 nitrogenous compounds, and 39 hydrocarbons.

The area of these identified peaks represented above 96% of the chromatogram surfaces (excluding solvent and cyclohexanol) of the SDE and column concentrates. The total concentrations of the identified compounds were 92.9 ppm by the SDE method and 11.9 ppm by the column method, respectively.

Among alcohols, aliphatic compounds were increased about 30 times by the SDE operation. The wide increases in saturated alcohols such as n-hexanol, *n*-octanol, and *n*-nonanol could be responsible for the woody and fragrant odors of the SDE concentrate. On the other hand, unsaturated alcohols except for (E)-3hexen-1-ol were contained only in trace amounts in the column concentrate, but during the SDE operation (Z)-3-hexen-1-ol and (E)-2-octenol increased to 5517 and 258 ppb, respectively. Such great increases in unsaturated alcohols must impart a stinging green odor to the SDE concentrate. Takei et al. (1976) have described that (Z)-3-hexen-1-ol and its esters were responsible for the freshness and briskness of early spring green tea. We considered, however, unsaturated alcohols could have degraded the odor of Sen-cha infusion in their high levels. 2,6-Dimethyl-1,3,7-octatrien-6-ol (trienol) was formed from 2,6-dimethyl-3,7-octadiene-2,6-diol (diene-

diol) during a firing process (Hara et al., 1987). It was also reported that the former had a citrus-like and slightly fragrant odor and the latter had a weak citrus and green odor, though neither compound was found in the SDE concentrate. Hydroxybenzene alcohols were formed in large quantities during SDE, while benzene alcohols disappeared. The hydroxy compounds, which are not found in either green, partially fermented, or black tea, might be derived from a degradation of lignin in the tea product. All four types of linalool oxides increased by SDE, although cis-pyranoid was at almost the same level in both concentrates. Linalool, geraniol, D-nerolidol, and cadinols were also formed in large quantities during SDE. These terpene alcohols including linalool oxides have floral, woody, and rose-like pleasant odors (Belitz and Grosch, 1987a), but the great increases could result in a significant change in green tea odor. Especially the vast quantity of D-nerolidol could be responsible for woody and floral odors (Mosandl, 1992) of boiled green tea infusion.

Aliphatic aldehydes increased about 26 times by SDE: *n*-pentanal, *n*-hexanal, *n*-heptanal, (Z)-2-pentenal, (Z)-3-hexenal, (Z)-4-heptenal, (E)-2-heptenal, (E)-2-octenal, (E,Z)- and (E,E)-2,4-heptadienal, and 2,6-dimethyl-5-heptenal were increased markedly. It was clear that these compounds could impart grassy and oily aldehydic odors to the SDE concentrate. Among aromatic aldehydes, principal components, which were benzaldehyde with a strong almond-like odor (Atlas of Odor Character Profiles, 1985) and benzeneacetaldehyde with a floral odor (Belitz and Grosch, 1987b), increased several times by SDE.

Most aliphatic and alicyclic ketones increased several times by SDE. Many kinds of alkenyl-2-ones, the characteristic group in the volatile compounds of green tea, could be liberated from free fatty acids which were first oxidized to β -keto acids and then decarboxylated to the corresponding ketones (Hawke, 1966; Forss, 1979). It was noted that 2,2,6-trimethylcyclohexanone, 3,5,5-trimethyl-2-cyclohexen-1-one, cyclohexanone derivative ($I^{\text{DB-Wax}} = 1619$), 4-ethyl-3,4-dimethyl-2,5-cy-clohexadien-1-one, and 4-hydroxy-3,5,6-trimethyl-4-(3-oxo-1-butenyl)-2-cyclohexen-1-one, which were all degradation products of carotenoids (Kawashima, 1973), were formed in large quantities during SDE. The quantitative changes in aliphatic and alicyclic ketones having woody and hay-like odors must result in a great difference between two odor concentrates. Phenylethanone was formed during the SDE operation, while its two derivatives have disappeared. 1-(3,4-Dimethylphenyl)ethanone and 1-(4-ethylphenyl)ethanone have not been found in green tea, possibly owing to their lability in a green tea infusion. Preparative GC and sniffing of column concentrate showed the fraction from 1820 to 1920 in Kovats index had a typical green-tea-like odor, and authentic 1-(3,4-dimethylphenyl)ethanone and 1-(4ethylphenyl)ethanone possessed a green-tea-like aroma with fragrant and sweet odors. Therefore, it was ascertained that the odor of green tea infusion was improved by the addition of 1-(3,4-dimethylphenyl)ethanone at a level of 100 ppb. The contents of these two compounds in the infusion of higher grade Sen-cha, however, were lower than those in medium grade Sencha infusion. It was considered that these compounds were the character impact compounds of green tea but that the quantitative balance of volatile flavor compounds was more important. 3-Keto- β -ionone and 7,8dihydro- β -ionone exceptionally decreased, but β -ionone and other derivatives widely increased by SDE. The increases in β -ionone and its epoxides could be respon-

Table 1. Identification and Comparative Quantification of Volatile Compounds Separated from Green Tea

			approx concn, ^{α} μ g/kg			approx concn,ª µg/kg	
B-Wax	compound	column ^b		IDB-Wax	compound	column ^b	
				. Alcol		001	
912	1. Aliphatics 2-propanol	241 tr ^d	7409 22	1870	2. Aromatics benzenemethanol	$\begin{array}{c} 321 \\ 221 \end{array}$	472 175
925	ethanol	tr	106	1903	benzeneethanol	35	tr
083	2-methyl-1-propanol	tr	tr	1918	α-methyl-3-(1-methylethyl)benzeneethanol	65	tr
136	n-butanol	tr	22	2257	3-hydroxybenzenemethanol	tr	186
324	2-penten-1-ol	53	146	2265	4-hydroxybenzenemethanol	tr	465
345	n-hexanol	tr	161	2415	3-hydroxybenzeneethanol	tr	408
367 383	(E)-3-hexen-1-ol (Z)-3-hexen-1-ol	27 tr	$\frac{42}{5517}$	1432	3. Terpenoids linalool oxide (trans-furanoid)	807 tr	839 119
428	2,3-epoxyhexanol	13	19	1458	linalool oxide (<i>cis</i> -furanoid)	28	15
441	1-octen-3-ol	tr	tr	1545	linalool	40	93
473	2-ethylhexan-1-ol	24	tr	1614	2,6-dimethyl-1,3,7-octatrien-6-ol	23	tr
554	n-octanol	16	456	1685	a-terpineol	tr	tr
605	(E)-2-octenol	tr	258	1724	linalool oxide (<i>trans</i> -pyranoid)	58	13
619 621	2-(2-ethoxyethoxy)ethanol 1,2-ethanediol	15 tr	tr 445	$\begin{array}{c} 1751 \\ 1805 \end{array}$	linalool oxide (<i>cis</i> -pyranoid) nerol	234 tr	27 tr
353	n-nonanol	tr	28	1841	geraniol	tr	45
932	3-hexene-2,5-diol	93	tr	2023	D-nerolidol	275	59
962	n-dodecanol	tr	14	2051	2,6-dimethyl-3,7-octadiene-2,6-diol	149	tr
314	1,2,3-propanetriol	tr	173	2165	d-cadinol	tr	56
197	(-)-d-cadinol	tr	348		,		
	1. Aliphatics	108	II. 2681	. Aldeh 1476	(<i>E</i> , <i>E</i>)-2,4-heptadienal	tr	51
307	2-methylpropanal	tr	65	1543	(Z)-2-nonenal	tr	19
03	2-methylbutanal	39	tr	1576	(E,Z)-2,6-nonadienal	tr	28
06	3-methylbutanal	39	tr	1616	(E)-2-decenal	tr	31
68	n-pentanal	tr	99	1697	2,6-dimethyl-5-heptenal	tr	45
)73 .25	n-hexanal (Z)-2-pentenal	17 tr	306 62	1815	(E,E)-2,4-decadienal 2. Aromatics	tr 75	36 28
.77	<i>n</i> -heptanal	13	473	1496	benzaldehyde	37	18
96	(E)-2-hexenal	tr	tr	1623	benzeneacetaldehyde	38	56
15	(Z)-3-hexenal	tr	136	1663	2-hydroxybenzaldehyde	tr	19
43	(Z)-4-heptenal	tr	45	1705	2,5-dimethylbenzaldehyde	tr	22
91	(E)-2-heptenal	tr	65		3. Others	8	93
885 125	n-nonanal (E)-2-octenal	tr tr	$\frac{12}{85}$	$\frac{1430}{1447}$	2,6,6-trimethyl-2-cyclohexene-1-carboxaldehyde furfural	tr tr	$\frac{11}{82}$
57	(E,Z)-2-octenal (E,Z)-2,4-heptadienal	tr	249	1471	Turtural	UI .	04
				II. Keto			
875	1. Aliphatics 2-butanone	595 97	$\begin{array}{c} 3221 \\ 42 \end{array}$	2665	4-(5-hydroxy-2,6,6-trimethyl-1-cyclohexen- 1-yl)-3-buten-2-one	tr	12
55	2.3-butanedione	37 tr	42 59		2. Aromatics	107	36
78	3,3-dimethyl-2-butanone	7	tr	1632	phenylethanone	tr	36
19	1-penten-3-one	tr	39	1831	1-(3,4-dimethylphenyl)ethanone	74	tr
56	2,3-pentanedione	tr	59	1867	1-(4-ethylphenyl)ethanone	33	tr
83	5-hexen-2-one	8	76		3. Terpenoids	tr	17
21	3-penten-2-one	12	107	1714	1,6-methano[10]annulen-11-one	tr	tr
31 55	4-methyl-3-penten-2-one 5-methyl-2-hexanone	40	263	1843	trans-geranyl acetone	tr 372	$\frac{17}{17}$
62 62	2-heptanone	tr tr	$\frac{351}{22}$	1840	4. Ionone Derivatives γ-ionone	372 tr	11
14	cyclohexanone	193	22	1896	β -ionone-5,6-epoxide (<i>trans</i> type)	tr	45
45	2-methyl-6-methylene-1,7-octadien-3-one	tr	130	1942	β -ionone	tr	11
51	4-hydroxy-4-methyl-2-pentanone	7	tr	2007	β -ionone-5,6-epoxide (<i>cis</i> type)	49	45
77	2,2,6-trimethylcyclohexanone	tr	56	2068	6-methyl-a-ionone	84	tr
87 06	6-methyl-5-hepten-2-one	tr tr	133	2459	3-keto- β -ionone	tr 239	tr
06 93	3,5,5-trimethyl-2-cyclohexen-1-one (<i>E</i> , <i>Z</i>)-3,5-octadien-2-one	tr 35	$\frac{42}{102}$	2653	7,8-dehydro-β-ionone 5. Furanones and Lactones	$\frac{239}{264}$	tr tr
93 62	(E,Z)-3,5-octadien-2-one (E,Z)-3,5-octadien-2-one	35 tr	102 65	1254	dihydro-3,5-dimethyl-2(3H)-furanone	264 45	tr tr
64	2,6-dimethyl-2,5-heptadien-4-one	tr	tr	1671	dihydro-5-isopropyl-3(2H)-furanone	21	tr
75	6-methyl- (E,Z) -3,5-heptadien-2-one	tr	tr	2034	dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone	7	tr
82	6-methyl- (E, E) -3,5-heptadien-2-one	tr	31	2074	3,5,5-trimethyl-2(5H)-furanone	19	tr
19	cyclohexanone derivative	tr	391	2245	(Z)-7-decen-5-olide	$172 \\ 752$	tr
29	4-ethyl-3,4-dimethyl-2,5-cyclohexadien- 1-one	tr	82	1064	6. Others tetrahydro-3,6-dimethyl-2H-pyran-2-one	753 21	10 tr
40	2,2,6-trimethyl-1,4-cyclohexanedione	tr	tr	1680	dihydro-3-methylene-2,5-furandione	tr	28
78	2-(2-butoxyethoxy)ethanone	84	tr	1952	3,4,4a,5,8,8a-hexahydro- $4a$ -methyl- $2(1H)$ -	tr	85
67	3,5,5-trimethyl-4-(3-oxo-1-butenyl)-2-	113	tr		naphthalenone		
08	cyclohexen-1-one 1,5-di- <i>tert</i> -butyl-3,3-dimethylbicyclo-	59	tr	$\begin{array}{c} 1980 \\ 2260 \end{array}$	1-(1H-pyrrol-2-yl)ethanone 3-ethyl-4-methyl-1H-pyrrole-2,5-dione	$186 \\ 285$	25 tr
00	[3.1.0]hexen-2-one	09	U	2325	5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H)-	$\frac{285}{211}$	15
32	4-hydroxy-3,5,6-trimethyl-4-(3-oxo-	tr	1021	2325	benzofuranone		
	1-butenyl)-2-cyclohexene-1-one		T	IV. Est	ars		
	1. Aliphatics	365	1577	1639	(Z)-3-hexenyl butanoate	tr	61
51	1-methylethyl acetate	tr	tr	1819	dimethyl hexanedioate	tr	tr
05	1-propen-2-yl formate	tr	439	1850	3-hydroxy-2,4,4-trimethylpentyl 2-methyl-	tr	76
969	methyl butanoate	29	tr	1882	propanoate 2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl 2-	14	13

Table 1 (Continued)

		approx concn, ^a µg/kg				appı concn, ^a	cox μg/kg
I ^{DB-Wax}	compound	column ^b	SDE ^c	$I^{\text{DB-Wax}}$	compound	column ^b	SDE⁰
1059	butyl acetate	27	tr	1939	3-hexenyl hexanoate	295	tr
1258	pentyl formate	tr	221	2624	methyl linolenate	tr	59
1375	(Z)-3-hexenyl acetate	tr	tr		2. Others	210	158
1446	heptyl formate	tr	31	1763	methyl 2-hydroxybenzoate	tr	85
1612	(E)-3-hexenyl butanoate	tr	tr	2006	4-phenyl-2-butyl acetate	15	tr
1625	octyl 2-propenoate	tr	tr	2073	methyl 2-methoxybenzoate	10	tr
2338	methyl jasmonate	119	73	2010	metnyi z-metnoxybenzoate	12	U
2000	monyijasmonate	110		. Acids			
	1. Aliphatics	1490	323	2157	n-nonanoic acid	340	tr
1435	acetic acid	171	312	2479	n-dodecanoic acid	81	tr
1833	n-hexanoic acid	224	tr	2679	n-tetradecanoic acid	6	
1943	<i>n</i> -heptanoic acid	457	tr		2. Aromatic Acid	-	
1954	3-hexenoic acid	211	tr	2521	benzeneacetic acid	81	tr
1969	2-ethylhexanoic acid	tr	11	2021	benzeneacetic acid	01	U
1000	2 confineratione dela			lic Com	nounde		
1906	2,6-di- <i>tert</i> -butyl-p-cresol	3358	10133	2009	2-ethyl-4,5-dimethylphenol	88	tr
1987	2,5-diethylphenol	191	tr	2310	3,5-bis(1,1-dimethylethyl)phenol	tr	22
			laneous	Ovvgen	ated Compounds		
833	tetrahydro-2-methylfuran	9	luncous	2389	coumaran	135	tr
1231	2-pentylfuran	tr	36	2451	coumarin	109	tr
1417	2-methoxy-1,3,5-trimethylbenzene	tr	22				
	• • • • • •	VIII	. Nitrog	enous Co	ompounds		
1184	1-ethyl-1 <i>H</i> -pyrrole	tr	14	1660	isothiocyanatocyclohexane	tr	187
1282	methylpyrazine	tr	8	1691	N-butyl-N-nitroso-1-butanamine	tr	28
1372	2,5-dimethylpyrimidine	35	tr	1720	4-methoxybenzaldehyde oxime	16	tr
1381	2-ethyl-6-methylpyrazine	tr	tr	1746	N,N-dibutylformamide	tr	tr
1383	2-ethyl-5-methylpyrazine	tr	tr	1776	N,N-bis(1-methylethyl)-1,2-ethanediamine		144
1414	<i>N</i> , <i>N</i> -dimethylacetamide	tr	17	1809	N,N-dibutylacetamide	tr	178
				1863	(S)-3-(1-methyl-2-pyrrolidinyl)pyridine		11
1439	3-ethyl-2,5-dimethylpyrazine	tr	tr			tr 17	
1479	methylhydrazine	18	tr	1912	2-methylbenzonitrile		tr
1490	1 <i>H</i> -pyrrole	tr	14	1928	4-methylbenzonitrile	tr	198
1568	2-azido-2,3,3-trimethylbutane	5	tr	1955	benzisothiazole	tr	tr
1610	1-ethyl-1H-pyrrole-2-carboxaldehyde	35	49 0	1973	benzothiazole	tr	65
	4 471.7 41.	000		drocarb		05	177
000	1. Aliphatics	682	1000	1134	1,3-dimethylbenzene	25	17
800	<i>n</i> -octane	276	34	1190	1,2-dimethylbenzene	13	tr
823	4-methyloctane	22	tr	1205	1-methyl-2-ethylbenzene	585	tr
900	<i>n</i> -nonane	tr	tr	1207	<i>n</i> -propylbenzene	tr	28
1000	<i>n</i> -decane	51	34	1221	1-methyl-3-ethylbenzene	tr	422
1100	<i>n</i> -undecane	92	153	1227	1-methyl-4-ethylbenzene	tr	176
1200	<i>n</i> -dodecane	tr	394	1250	1,3,5-trimethylbenzene	7	36
1263	(E)-2-dodecene	208	22	1278	1,2,4-trimethylbenzene	39	28
1269	bicyclo[4.2.0]octa-1,3,5-triene	tr	tr	1287	1-methyl-2-isopropylbenzene	tr	tr
1300	n-tridecane	12	tr	1296	1,3-diethylbenzene	21	tr
1365	3-methyltridecane	tr	14	1304	<i>n</i> -butylbenzene	33	130
1400	<i>n</i> -tetradecane	tr	5	1330	1-methyl-2-propylbenzene	tr	tr
1488	4,8-dimethyltridecane	tr	164	1351	bis(1-methylethyl)benzene	tr	39
1500	<i>n</i> -pentadecane	21	tr	1364	4-ethyl-1,2-dimethylbenzene	7	tr
1600	<i>n</i> -hexadecane	tr	90	1517	tetrahydronaphthalene	21	tr
1800	<i>n</i> -octadecane	tr	90	1572	1,3-butadienylbenzene	15	tr
1900	n-nonadecane	tr	tr	2228	3.4-diethyl-1.1'-biphenyl	43	tr
1900	2. Aromatics	832	2552	2220	3. Terpenoids	43 70	229
1028	toluene	tr	2002 90	1203	d-limonene	70 70	225 tr
1028 1125	ethylbenzene	tr 15	90 tr	1203 1725	α-farnesene	tr	1r 215
	1,4-dimethylbenzene				a-tarnesene a-cubebene		215 14
1130	1,4-unneurymenzene	8	tr	1738	u-cubebene	tr	14

^a Only approximate concentrations since percent recoveries and FID response factors were not determined for each compound (assume all response factors of 1). ^b Adsorptive column concentration method. ^c Steam distillation continuous extraction under reduced pressure. ^d tr represents concentration less than 5 $\mu g/kg$.

sible for floral and fragrant odors (Atlas of Odor Character Profiles, 1985). Kawakami (1982) showed that ionone series compounds and cyclohexane derivatives were produced by thermal degradation of β -carotene. Besides the drastical increase of hexahydro-4amethyl-2(1H)-naphthalenone by SDE, 3-ethyl-4-methyl-1H-pyrrole-2,5-dione, 3-ethyl-3-methyl-2,5-pyrrolidinedione, and 2H-1-benzopyran-2-one, which were confirmed to have an intense sweet odor by preparative GC and sniffing, almost disappeared by SDE. We concluded the disappearances of these compounds with sweet odor must definitely degrade the odor of green tea.

Among aliphatic esters, 3-hexenyl hexanoate, which was reported as an important contributor to the freshness of green tea (Takei et al., 1976; Kosuge et al., 1978), decreased by SDE. On the other hand, a great deal of (E)-3-hexenyl butanoate and its two formates was formed by SDE. Although these esters have fresh and fruity odors, their formation in overly large quantities might impart an unnatural odor to the SDE concentrate.

The great increase in 1-ethyl-1H-pyrrole-2-carboxyaldehyde was noted and seemed to be responsible for pungent and bitter odors. Isothiocyanatocyclohexane was responsible for a typical astringent odor of the SDE concentrate by preparative GC and sniffing. N,N-Bis-(1-methylethyl)-1,2-ethanediamine, N,N-dibutylacetamide, benzonitriles, and other nitrogenous volatiles might impart unpleasant odors to the SDE concentrate.

It seemed that the disappearances of coumaran and vanillin seriously degraded the green tea odor; that is, the odor concentrate by SDE possessed astringent and woody odors without any sweet odor attributes.

With respect to hydrocarbons, aromatic compounds increased about 3 times by SDE, and we concluded that the intense aromatic odor was not similar to a green tea odor. The disappearance of *d*-limonene and the formation of α -farnesene and α -cubebene were observed, although the sensory contribution would be low.

DISCUSSION

We have carried out a comparative investigation on the composition of volatile compounds from black tea (Shigematsu et al., 1994). It was shown that there were wide differences in the formation of volatile compounds during SDE between green tea and black tea. With regard to the SDE concentrate from black tea, a great increase in (E)-3-hexen-1-ol and decreases in *cis*- and *trans*-pyranoids of linalool oxides and β -ionone and its derivatives were observed. The increases in *n*-heptanol, *n*-octanol, D-nerolidol, and (*E*,*E*)- and (*E*,*Z*)-2,4-heptadienal were characteristic to green tea. The increase in *cis*- and *trans*-furanoids of linalool oxide and the decrease in α -terpineol and nerol were common to both teas.

Many authors (Hara and Kubota, 1982; Wright and Fishwick, 1979; Owuor et al., 1990) reported that aliphatic alcohols and aldehydes resulted from oxidative degradation of unsaturated fatty acid. We, however, ascertained few alcohols and aldehydes resulted from unsaturated fatty acids by SDE but they did result from the superoxides of unsaturated fatty acids. Although this is not reported yet, this is supported by the increase in the flavor reversion type off-flavor developing during storage (Horita, 1987). We also considered that the precursors of β -ionone, cyclohexanone, and cyclohexenone derivatives could be superoxides of carotenoids.

Kinugasa and Takeo (1990) reported that linalool, geraniol, D-nerolidol, and indole resulted from their glycosides in green tea infusion by pectinase. Takeoka et al. (1992) have reviewed that there were many kinds of glycosides of volatile compounds including benzaldehyde, benzene alcohols, and β -ionone and its derivatives in nectarine fruit. Therefore, it was clear that liberation of volatile compounds from nonvolatile glycosides by hydrolysis significantly influenced the chemical composition of the SDE odor concentrate.

It was concluded that the formations and decompositions of volatile compounds during SDE must bring about a serious difference in the flavor of green tea infusion, whereas the adsorptive column method enabled us to brew and separate volatile compounds in the same manner as we enjoy a green tea.

LITERATURE CITED

- Altas of Odor Character Profiles; ASTM Data Series DS 61; ASTM: Philadelphia, 1985.
- Belitz, H.-D.; Grosch, W. Food Chemistry; Hadziyev, D., translated; Springer-Verlag: Berlin, 1987a; pp 681-711.
- Belitz, H.-D.; Grosch, W. Food Chemistry; Hadziyev, D., translated; Springer-Verlag: Berlin, 1987b; pp 257-304.
- Eight Peak Index of Mass Spectra, 3rd ed.; The Mass Spectra Data Center: Nottingham, U.K., 1983.
- Forss, D. A. The flavor of dairy fats-A review. J. Am. Oil Chem. Soc. 1971, 48, 702-710.
- Hara, T.; Horita, H. Formation of 3,7-dimethyl-1,5,7-octatrien-3-ol and its precursor during the firing of green tea. Nippon Nogeikagaku Kaishi 1987, 61, 353-356.
- Hara, T.; Kubota, E. Changes in aroma components of green tea after storage. Nippon Nogeikagaku Kaishi 1982, 56, 625-630.

- Hara, T.; Kubota, E.; Horita, H. Off-flavor components in stored packaged green tea. *Nippon Nogeikagaku Kaishi* **1987**, *61*, 471-473.
- Hawke, J. C. Reviews of progress in dairy science. The formation and metabolism of methyl ketones and related compounds. J. Dairy Res. 1966, 33, 225-243.
- Horita, H. Off-flavor components of green tea during preservation. Jpn. Agric. Res. Q. 1987, 21, 192-197.
- Kawakami, M. Ionone series compounds from β -carotene by thermal degradation in aqueous medium. Nippon Nogeika-gaku Kaishi **1982**, 56, 917–921.
- Kawakami, M.; Kobayashi, A. Volatile constituents of green mate and roasted mate. J. Agric. Food Chem. 1991, 39, 1275-1279.
- Kawakami, M.; Yamanishi, T. Aroma characteristics of Kabusecha (shaded green tea). Nippon Nogeikagaku Kaishi 1981, 55, 117-123.
- Kawashima, K.; Yamanishi, T. Thermal degradation of β -carotene. Nippon Nogeikagaku Kaishi **1973**, 47, 79–81.
- Kinugasa, H.; Takeo, T. Deterioration mechanism for tea infusion aroma by retort pasteurization. Agric. Biol. Chem. 1990, 54, 2537-2542.
- Kosuge, M.; Mori, Y.; Yamanishi, T.; Fuchinoe, H. Aroma characteristics of Sayamakaori, a newly registered variety of tea plant. Nippon Nogeikagaku Kaishi 1978, 52, 259-262.
- Mosandl, A. Capillary gas chromatography in quality assessment of flavours and fragrances. J. Chromatogr. **1992**, 624, 267-292.
- Nguyen, T.; Yamanishi, T. Flavor components in vietnamese green tea and lotus tea (Studies on the flavor of green tea. part XI). Agric. Biol. Chem. 1975, 39, 1263-1267.
- Owuor, P. O.; Munavu, R. M.; Muritu, J. W. Plucking standard effects and the distribution of fatty acids in the tea (*Camellia* sinensis(L.)) leaves. Food Chem. **1990**, 37, 27–35.
- Shigematsu, H.; Shimoda, M.; Osajima, Y. Comparison of the odor concentrates of black tea prepared by column adsorption method and simultaneous distillation extraction method. *Nippon Shokuhin Kogyo Gakkaishi* 1994, 41, 768-777.
- Shimoda, M.; Shiratsuchi, H.; Minegishi, Y.; Osajima, Y. Flavor deterioration of nonfermented coarse-cut sausage during storage. (Flavor as a factor of quality for nonfermented sausage II). J. Agric. Food Chem. 1993, 41, 946-950.
- Takei, Y.; Ishiwata, K.; Yamanishi, T. Aroma components characteristic of spring green tea. Agric. Biol. Chem. 1976, 40, 2151-2157.
- Takeoka, G. R.; Flath, R. A.; Buttery, R. G.; Winterhalter, P.; Gunter, M.; Ramming, D. W.; Teranishi, R. Free and bound flavor constituents of white-fleshed nectarines. In *Flavor Precursors: Thermal and Enzymatic Conversions*; ACS Symposium Series 490; ACS: Washington, 1992; pp 116– 138.
- Van den Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gasliquid partition chromatography. J. Chromatogr. 1963, 11, 463-471.
- Wiley/NBS Registry of Mass Spectral Data; Wiley-Interscience: New York, 1989.
- Wright, A. J.; Fishwick, M. J. Lipid degradation during manufacture of black tea. *Phytochemistry* 1979, 18, 1511-1513.
- Yamaguchi, K.; Shibamoto, T. Volatile constituents of green tea, Gyokuro (Camellia sinensis L. var. Yabukita). J. Agric. Food Chem. 1981, 29, 366-370.
- Yamanishi, T. Flavor of green tea. Jpn. Agric. Res. Q. 1978, 12, 205-210.

Received for review September 26, 1994. Revised manuscript received March 27, 1995. Accepted April 3, 1995. $^{\otimes}$

JF9405416

[®] Abstract published in *Advance ACS Abstracts*, May 15, 1995.